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Table 5. Categorization Table for Papers - Part 1

ID Paper Data Property

Problem Setup Practicality

Target

Distribution

Model Robustness Setting Applicability

Exp.

Type of Evidence

Learning

Task

Classifier

Type

Definition

of

Robustness

Attacker’s

Knwl.

Attacker’s

Tech.

Perturb

Bound

Metr. Tech.

Fml. Empirical

Dataset

Classifier

Type

Training

Proc.

Attacks

1 Amsaleg et al. [10] Dimensionality Any Any Any Radius based White box Any 𝐿2 ✓ ✗ ✗ ✓ C-10 , IN 𝑘-NN Standard N/A

2 Awasthi et al. [12] Dimensionality Any Any DNNs Radius based White box Any 𝐿2, 𝐿∞ ✓ ✗ ✗ ✗ C-10 , C-100 DNNs Adversarial PGD

3 Bhagoji et al. [17] Separation Any

Binary

Classif.

Any

Error-rate

based

White box

Gradient

based

𝐿2 ✓ ✗ ✗ ✓
C-10 , M ,

FM

DNNs Adversarial PGD, FGSM

4 Bhattacharjee et al. [19] Separation Any

Binary

Classif.

Non-

parametric

classifiers

Radius based White box

Distance

based

𝐿2 ✓ ✓ ✓ ✓ HM

Histogram,

1-NN

Standard

Distance-

based

attacks

5 Bhattacharjee et al. [20]

Number of samples,

Dimensionality,

Separation

Well-separated

Binary

Classif.

Linear

Error-rate

based

White box Any 𝐿𝑝 , 𝑝 > 2 ✓ ✗ ✓ ✓ N/A N/A N/A N/A

6 Blum et al. [22] Dimensionality Any Any

Randomized

smoothed

classifier

Radius based White box Any 𝐿𝑝 , 𝑝 > 2 ✓ ✗ ✗ ✓ C-10

Smoothed

DNN

Adversarial

Gaussian

noise

7 Bui et al. [26] Separation Any Any DNNs

Error-rate

based

White box

Gradient

based

𝐿𝑝 ✗ ✓ ✗ ✗ C-10 , M CNNs Adversarial PGD

8 Carbone et al. [27] Dimensionality Any Any

Bayesian

neural

network

Radius based White box

Gradient

based

𝐿∞ ✗ ✗ ✓ ✓
M , FM ,

HM

Bayesian

neural

network

Adversarial PGD,FGSM

9 Carmon et al. [29] Number of samples

Gaussian-mixture

(theory),

Any (application)

Binary

Classif.

Any Radius based White box

Gradient

based

𝐿2, 𝐿∞ ✓ ✓ ✗ ✓ C-10 , S CNNs Adversarial PGD

10 Chen et al. [31] Domain-Specific Any Any CNN

Error-rate

based

White box Any 𝐿2 ✓ ✓ ✗ ✗

C-10 , C-100 ,

S , IN ,

L

CNNs Standard PGD, FGSM

11 Chen et al. [33] Domain-Specific Image Data Any CNNs

Error-rate

based

White Box

Gradient

based

𝐿𝑝 ✗ ✗ ✓ ✗

C-10 , C-100 ,

TI , IN ,

L

CNNs

Standard,

Adversarial

FGSM, BIM

PGD, C&W

12 Cheng et al. [35] Separation Gaussian Mixture Any DNNs

Error-rate

based

Any Any 𝐿2 ✗ ✓ ✓ ✗
C-10 , C-100 ,

M

DNNs

Standard,

Adversarial

FGSM, PGD,

C&W

13 Cullina et al. [43] Number of samples Any

Binary

Classif.

Any

Error-rate

based

White box Any 𝐿𝑝 ✓ ✗ ✓ ✓ N/A N/A N/A N/A

14 Dan et al. [44]

Number of samples,

Dimensionality

Gaussian-mixture

Binary

Classif.

Any

Error-rate

based

White box Any 𝐿𝑝 , 𝑝 ≥ 1 ✓ ✗ ✓ ✓ N/A N/A N/A N/A

15 Daniely et al. [45] Dimensionality Any Any

ReLU

networks

Radius-based White box Any 𝐿2 ✓ ✗ ✗ ✓ N/A N/A N/A N/A

16 De Palma et al. [47] Dimensionality Image Data Binary Classif. DNNs Radius-based White Box Any 𝐿1 ✓ ✗ ✗ ✓ M , C-10 DNNs Standard Others

17 Deng and Karam [51] Domain-Specific Image Data Any CNNs

Error-rate

based

White Box GANs-based 𝐿∞ ✓ ✓ ✓ ✗ IN CNNs Standard FTUAP

18 Deng and Karam [52] Domain-Specific Image Data Any CNNs

Error-rate

based

White Box GANs-based 𝐿∞ ✓ ✓ ✓ ✗
MC , G

etc.

CNNs Standard FTUAP

19 Ding et al. [53] Distribution Any Any Any

Error-rate

based

White box Any Any ✗ ✗ ✓ ✓ C-10 , M DNNs Adversarial PGD

20 Diochnos et al. [54] Dimensionality

Uniform distribu

-tion on boolean

hypercube

Any Any Radius based White box Any 𝐿0 ✓ ✗ ✗ ✓ N/A N/A N/A N/A

21 Dohmatob [55] Concentration Any Any Any Radius based White box Any

𝐿𝑝 ,

Geodesic

✓ ✗ ✗ ✓ M DNNs Adversarial

Not

mentioned

22 Dong et al. [56] Label Quality Any Any DNNs

Error-rate

based

White Box

Gradient-

based

𝐿2 ✗ ✓ ✓ ✓
C-10 , C-100 ,

TI

DNNs Adversarial

Square

RayS
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Table 6. Categorization Table for Papers - Part 2

ID Paper Data Property

Problem Setup Practicality

Target

Distribution

Model Robustness Setting Applicability

Exp.

Type of Evidence

Learning

Task

Classifier

Type

Definition

of

Robustness

Attacker’s

Knwl.

Attacker’s

Tech.

Perturb

Bound

Metr. Tech.

Fml. Empirical

Dataset

Classifier

Type

Training

Proc.

Attacks

23 Fawzi et al. [58] Distribution

Distribution

generated by

smooth

generative

model

Any Any Radius based White box Any Any ✓ ✗ ✓ ✓ C-10 , S DNNs Adversarial PGD

24 Garg et al. [62] Separation Any Any N/A

Error-rate

based

White box Any Any ✓ ✓ ✗ ✓ M DNNs Adversarial PGD

25 Gilmer et al. [66] Dimensionality

Concentric

n-dimensional

spheres

Binary

Classif.

DNNs Radius based White box

Gradient

based

𝐿2 ✓ ✗ ✓ ✓ M DNNs Standard PGD

26 Gourdeau et al. [72]

Number of samples,

Dimensionality

Boolean

hypercube

Binary Classif.

Monotone

Conjunction

Error-rate

based

White box Any 𝐿0 ✓ ✗ ✗ ✓ N/A N/A N/A N/A

27 Gourdeau et al. [73] Number of samples

Boolean

hypercube

Binary Classif.

Monotone

Conjunction

Error-rate

based

White box Any 𝐿0 ✓ ✗ ✗ ✓ N/A N/A N/A N/A

28 Gowal et al. [74] Number of samples Any Any Any

Error-rate

based

White box Any 𝐿𝑝 ✓ ✓ ✗ ✗
C-10 , C-100 ,

M , TI

DNNs Adversarial AutoAttack

29 Izmailov et al. [85] Distribution Any

Binary

Classif.

Linear SVM,

RBF SVM,

NNs

Error-rate

based

White box

Gradient

based

𝐿∞ ✓ ✓ ✗ ✗ M

Linear SVM,

RBF SVM,

DNN

Standard FGSM

30 Javanmard et al. [87]

Number of samples,

Dimensionality

Any Regres.

Linear

Regres.

Error-rate

based

Black box Any 𝐿2 ✓ ✗ ✗ ✓ N/A N/A N/A N/A

31 Kumar et al. [94] Dimensionality Any Any Any Radius based Any Any 𝐿𝑝 , 𝑝 > 2 ✓ ✗ ✗ ✓ C-10 , IN DNNs DNNs

Gaussian

noise

32 Lee et al. [98] Distribution Any Any DNNs

Error-rate

based

White box,

Black box

Gradient

based,

Non-

gradient

based

𝐿∞ ✗ ✓ ✓ ✓
C-10 , C-100 ,

S , TI

DNNs

Standard,

Adversarial

PGD, FGSM,

C&W,

Transfer-

based

attacks

33 Li et al. [100] Dimensionality

Well separated

Balanced

distribution

Binary

Classif.

ReLU networks

Error-rate

based

White Box Any 𝐿2, 𝐿∞ ✓ ✗ ✗ ✓ N/A N/A N/A N/A

34 Ma et al. [109] Domain-Specific Image Data Any CNNs

Error-rate

based

White Box

Gradient-

based

𝐿2, 𝐿∞ ✗ ✗ ✓ ✗
F , CX ,

D

CNNs Standard

FGSM, BIM

PGD, C&W

35 Mahloujifar et al. [112] Concentration

Distributions

in Lévy

families

Any Any

Error-rate

based

White box Any 𝐿0 ✓ ✗ ✗ ✓ N/A N/A N/A N/A

36 Mahloujifar et al. [113] Concentration Any Any Any

Error-rate

based

White box Any 𝐿2, 𝐿∞ ✓ ✗ ✗ ✗ C-10 , M DNNs Adversarial PGD

37 Mao et al. [115] Label Quality Any Any DNNs

Error-rate

based

White box

Gradient

based

𝐿∞ ✓ ✗ ✓ ✓ CS , TO DNNs Standard

PGD, FGSM

MIM, Houdini

38 Mehrabi et al. [116] Dimensionality

Gaussian

mixture

Regres.,

Binary

Classif.

Linear

Regres.,

Linear

classifiers

Error-rate

based

White box Any 𝐿𝑝 , 𝑝 ≥ 1 ✓ ✗ ✗ ✓ N/A N/A N/A N/A

39 Montasser et al. [119] Number of samples Any

Binary

Classif.

Any

Error-rate

based

White Box Any Any ✓ ✗ ✗ ✓ N/A N/A N/A N/A

40 Mustafa et al. [123] Separation Any Any DNNs

Error-rate

based

White box

Gradient

based

𝐿𝑝 ✗ ✓ ✗ ✓

C-10 , C-100 ,

M , FM ,

S

CNNs

Standard,

Adversarial

PGD, FGSM,

BIM, MIM,

C&W
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Table 7. Categorization Table for Papers - Part 3

ID Paper Data Property

Problem Setup Practicality

Target

Distribution

Model Robustness Setting Applicability

Exp.

Type of Evidence

Learning

Task

Classifier

Type

Definition

of

Robustness

Attacker’s

Knwl.

Attacker’s

Tech.

Perturb

Bound

Metr. Tech.

Fml. Empirical

Dataset

Classifier

Type

Training

Proc.

Attacks

41 Mygdalis et al. [124] Separation Any Any DNNs

Error-rate

based

Any

Gradient-

based

𝐿2 ✗ ✓ ✓ ✗
C-10 , C-100 ,

S

DNNs

Standard,

Adversarial

FGSM,

BIM, MIM

42 Najafi et al. [125] Number of samples Any Any Any

Error-rate

based

White box

Gradient

based

𝐿2, 𝐿∞ ✓ ✓ ✗ ✓
C-10 , M ,

S

DNNs Adversarial PGD

43 Naseer et al. [126] Density Any Any DNNs Radius-based White Box

Gradient-

based

Any ✓ ✓ ✓ ✗ M DNNs Standard FGSM

44 Oritz-Jimenez et al. [130] Domain-Specific Any Any CNNs Radius based White box

Gradient

based

𝐿2 ✓ ✗ ✓ ✗
C-10 , M ,

IN

CNNs

Standard,

Adversarial

PGD

45 Pang et al. [131]

Distribution,

Separation

Any Any DNNs Radius based White box

Gradient

based

𝐿2 ✓ ✓ ✓ ✓
C-10 , M ,

IN

DNNs Standard

FGSM, BIM

ILCM, JSMA

46 Pang et al. [132]

Density,

Separation

Any Any DNNs

Error-rate

based

White box,

Black box

Gradient

based,

Non-

gradient

based

𝐿2, 𝐿∞ ✓ ✓ ✗ ✓
C-10 , C-100 ,

M

DNNs

Standard,

Adversarial

PGD, FGSM,

Transfer-

based

attacks

47 Prescott et al. [137] Concentration

Gaussian (theory),

Any (application)

Any Any

Error-rate

based

White box Any 𝐿𝑝 , 𝑝 ≥ 2 ✓ ✗ ✗ ✓
C-10 , M ,

FM , S

N/A N/A N/A

48 Pydi & Jog [138] Separation Any

Binary

Classif.

Any

Error-rate

based

White box

Gradient

based

𝐿2, 𝐿∞ ✓ ✗ ✗ ✓
C-10 , M ,

FM , S

DNNs Adversarial N/A

49 Pydi & Jog [139] Separation Any

Binary

Classif.

Any

Error-rate

based

White box

Gradient

based

𝐿2, 𝐿∞ ✓ ✗ ✗ ✓ N/A N/A N/A N/A

50 Qaraei et al. [140] Number of samples

Discrete

language

data.

Binary

Classif.

DNNs

Error-rate

based

White Box

Gradient-

based

𝐿0 ✓ ✓ ✗ ✗ W , AC DNNs Standard Others

51 Rajput et al. [141] Dimensionality Any Any

Linear

classifiers,

non-linear

classifiers

Radius based Any Any 𝐿2 ✓ ✗ ✗ ✓ N/A N/A N/A N/A

52 Richardson & Weiss [144] Distribution Gaussian-mixture

Binary

Classif.

Bayes

optimal,

SVM,

CNNs

Radius based White box Any 𝐿2 ✗ ✗ ✗ ✗ M

Linear SVM,

Kernel SVM,

CNNs

Standard,

Adversarial

C&W

53 Sanyal et al. [147] Label Quality Any

Binary

Classif.

Any

Error-rate

based

White box Any Any ✗ ✗ ✓ ✓ C-10 , M DNNs

Standard,

Adversarial

PGD

54 Schmidt et al. [148]

Number of samples,

Distribution

Gaussian-mixture,

Bernoulli-mixture

Binary

Classif.

Any

Error-rate

based

White box Any 𝐿∞ ✓ ✗ ✗ ✓
C-10 , M ,

S

DNNs Adversarial PGD

55 Shafahi et al. [152]

Dimesionality,

Density

N-dimensional

hypercube

Any Any Radius-based White box Any

𝐿𝑝 ,

Geodesic

✗ ✗ ✓ ✓ C-10 , M CNN Adversarial PGD

56 Shamir et al. [154] Label Quality Any

Binary

Classif.

ReLU networks Radius-based White Box Any 𝐿0 ✓ ✗ ✗ ✓ M DNNs Standard Others

57 Simon-Gabriel et al. [159] Dimensionality Any Any DNNs

Error-rate

based

White box Any Any ✓ ✗ ✗ ✓ C-10 DNNs Adversarial PGD

58 Song et al. [162] Density Any Any Any

Error-rate

based

Any Any Any ✓ ✓ ✗ ✗
C-10 , M ,

FM

CNNs Adversarial

FGSM, BIM

C&W,

DeepFool

59 Sun et al. [164] Domain-Specific Image Data Any CNNs Radius-based Any Corruption 𝐿2 ✗ ✓ ✓ ✗
C-10 , C-100 ,

IN

CNNs Adversarial Corruption
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Table 8. Categorization Table for Papers - Part 4

ID Paper Data Property

Problem Setup Practicality

Target

Distribution

Model Robustness Setting Applicability

Exp.

Type of Evidence

Learning

Task

Classifier

Type

Definition

of

Robustness

Attacker’s

Knwl.

Attacker’s

Tech.

Perturb

Bound

Metr. Tech.

Fml. Empirical

Dataset

Classifier

Type

Training

Proc.

Attacks

60 Uesato et al. [175] Number of samples

Gaussian-mixture

(theory),

Any (application)

Binary

Classif.

Any

Error-rate

based

White box Any 𝐿∞ ✓ ✓ ✗ ✓ C-10 , S DNNs Adversarial PGD, FGSM

61 Wan et al. [177]

Distribution,

Separation

Any Any Any

Error-rate

based

White box Any 𝐿∞ ✗ ✓ ✗ ✓
C-10 , M ,

IN

DNNs Standard

FGSM, BIM,

ILCM, C&W

62 Wang et al. [179] Domain-Specific Any Any CNNs

Error-rate

based

White box

Gradient

based

𝐿2 ✓ ✗ ✓ ✗ C-10 CNNs

Standard,

Adversarial

PGD, FGSM

63 Wang et al. [184]

Dimensionality,

Separation

Any

Binary

Classif.

kNN Radius based White box Any 𝐿2 ✓ ✓ ✗ ✗
M , M1V7 ,

HM

𝑘-NN Adversarial

Direct attack,

Transfer-based

attacks

64 Wang et al. [182] Number of samples

Gaussian-mixture

(theory),

Any (application)

Binary

Classif.

(theory),

Any (appl.)

DNNs

Error-rate

based

White Box

Gradient-

based

𝐿𝑝 ✓ ✓ ✓ ✓ C-10 , S DNNs

Standard,

Adversarial

PGD

65 Weber et al. [185] Dimensionality Hierarchial data Any Any

Error-rate

based

White box Any Check ✓ ✓ ✓ ✗ IN

Hyperbolic

perceptron

Adversarial

Gradient

based

66 Wu et al. [186] Number of samples Any Any DNNs

Error-rate

based

White box

Gradient

based

𝐿∞ ✓ ✓ ✗ ✗ C-10 , C-100 DNNs

Standard,

Adversarial

PGD C&W

Transfer-based

attacks

67 Xing et al. [188] Number of samples

Sub-Gaussian

(theory),

Any (application)

Binary

Classif.

Linear

classifers

(theory),

Any

(application)

Error-rate

based

White Box Any 𝐿2, 𝐿∞ ✓ ✓ ✓ ✓
C-10 , C-100 ,

S

DNNs

Standard,

Adversarial

PGD

68 Xu & Liu [190] Number of samples Any

Multi-Class

Classif.

Any

Error-rate

based

White Box Any 𝐿𝑝 , 𝑝 ≥ 1 ✓ ✗ ✗ ✓ N/A N/A N/A N/A

69 Yang et al. [195] Separation Any Any DNNs

Error-rate

based

White box

Gradient

based

𝐿2 ✓ ✓ ✗ ✓
C-10 , C-100 ,

M , TI

DNNs Adversarial PGD

70 Yang et al. [197] Separation Any

Binary

Classif.

Non-

parametric

classifiers

Radius based White box

Distance

based

𝐿2 ✓ ✓ ✗ ✓ HM

Histogram,

1-NN

Standard

Distance

based

71 Yin et al. [199] Domain-Specific Any Any Any

Error-rate

based

White box Any 𝐿2 ✓ ✗ ✗ ✗ C-10 , IN DNNs Adversarial

Corruptions,

PGD

72 Yin et al. [198] Dimensionality Any Any

Linear

classifiers,

DNNs

Error-rate

based

White box Any 𝐿∞ ✓ ✗ ✗ ✓ M

Linear

classifiers,

ReLU

networks

Adversarial PGD

73 Zhang et al. [204] Domain-Specific Image Data Any CNNs

Error-rate

based

White Box

Gradient-

based

𝐿1, 𝐿∞ ✗ ✗ ✓ ✗ IN CNNs Standard UAP

74 Zhang et al. [206] Density Any Any Any

Error-rate

based

White box Any 𝐿2, 𝐿∞ ✓ ✗ ✗ ✗
C-10 , M ,

FM

DNNs Adversarial C&W

75 Zhang & Evans [210] Concentration

Gaussian (theory),

Any (application)

Any Any

Error-rate

based

White box Any 𝐿2, 𝐿∞ ✓ ✗ ✗ ✓ C-10 DNNs

Standard,

Adversarial

AutoAttack

76 Zhang et al. [205] Label Quality Any Any DNNs

Error-rate

based

White Box

Gradient-

based

𝐿∞ ✗ ✓ ✓ ✗ C-100 , IN DNNs Standard FGSM, PGD

77 Zhu et al. [213] Density Any Any DNNs

Error-rate

based

Any Any 𝐿∞ ✓ ✗ ✗ ✓ IN CNNs Adversarial

PGD

Transfer-based

attacks
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It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness

Tables 5-8 include the detailed categorization of papers collected in this survey. We used the

following abbreviation to denote the datasets discussed in the papers: M for MNIST, FM for

Fashion-MNIST [187], S for SVHN, C-10 for CIFAR-10, C-100 for CIFAR-100, IN for Ima-

geNet [93], TI for Tiny Images Dataset, CA for CelebA [106], HM for Halfmoon, M1V7 for

MNIST 1v7, A for abalone [75], L for LSUN [201], CS for Cityscapes [40], TO for Taskon-

omy [203], W for Wikipedia-31K [18], AC for AmazonCat-13K [18] MC for MINC [15], G

for GTOS [193], F for Fundoscopy [91], CX for Chest X-Ray [183], D for Dermoscopy [39].

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.



Peiyu Xiong, Michael Tegegn, Jaskeerat Singh Sarin, Shubhraneel Pal, and Julia Rubin

REFERENCES
[1] [n. d.]. ACM Computing Surveys Journal. https://dl.acm.org/journal/csur.

[2] [n. d.]. Advances in Neural Information Processing Systems (NeurIPS). https://proceedings.neurips.cc.

[3] [n. d.]. CORE ranking (Conference Portal). http://portal.core.edu.au/conf-ranks/.

[4] [n. d.]. Journal Citation Reports (JCR). https://jcr.clarivate.com/jcr/home.

[5] [n. d.]. Proceedings of Machine Learning Research. https://proceedings.mlr.press.

[6] [n. d.]. Semantic Scholar Academic APIs. https://www.semanticscholar.org/product/api.

[7] Albert Ahumada and Heidi Peterson. 1992. Luminance-model-based DCT quantization for color image compression.

Human Vision, Visual Process Display III 1666 (02 1992).
[8] Naveed Akhtar and Ajmal Mian. 2018. Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey.

IEEE Access 6 (2018), 14410–14430.
[9] Naveed Akhtar, Ajmal S. Mian, Navid Kardan, and Mubarak Shah. 2021. Advances in Adversarial Attacks and Defenses

in Computer Vision: A Survey. IEEE Access 9 (2021), 155161–155196.
[10] Laurent Amsaleg, James Bailey, Amélie Barbe, Sarah M. Erfani, Teddy Furon, Michael E. Houle, Miloš Radovanović,

and Xuan Vinh Nguyen. 2021. High Intrinsic Dimensionality Facilitates Adversarial Attack: Theoretical Evidence.

IEEE Transactions on Information Forensics and Security 16 (2021), 854–865.

[11] Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. 2019. Intrinsic Dimension of Data Represen-

tations in Deep Neural Networks. In Advances in Neural Information Processing Systems (NeurIPS). 6111–6122.
[12] Pranjal Awasthi, Himanshu Jain, Ankit Singh Rawat, and Aravindan Vijayaraghavan. 2020. Adversarial Robustness

via Robust Low Rank Representations. In Advances in Neural Information Processing Systems (NeurIPS). 11391–11403.
[13] Ms. Aayushi Bansal, Dr. Rewa Sharma, and Dr. Mamta Kathuria. 2021. A Systematic Review on Data Scarcity Problem

in Deep Learning: Solution and Applications. Comput. Surveys 54, 208 (2021), 1–29.
[14] Markus Bayer, Marc-André Kaufhold, and Christian Reuter. 2022. A Survey on Data Augmentation for Text Classifi-

cation. Comput. Surveys (2022).
[15] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. 2015. Material Recognition in the Wild with the Materials

in Context Database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[16] Shai Ben-David, Nicolò Cesa-Bianchi, David Haussler, and Philip.M. Long. 1995. Characterizations of Learnability for

Classes of (0, ..., n)-Valued Functions. J. Comput. System Sci. 50, 1 (1995), 74–86.
[17] Arjun Nitin Bhagoji, Daniel Cullina, and Prateek Mittal. 2019. Lower Bounds on Adversarial Robustness from Optimal

Transport. In Advances in Neural Information Processing Systems (NeurIPS).
[18] Kush Bhatia, Kunal Dahiya, Himanshu Jain, Purushottam Kar, Anshul Mittal, Yasgiteja Prabhu, and Manik Varma.

2016. The extreme classification repository: Multi-label datasets and code. http://manikvarma.org/downloads/XC/

XMLRepository.html

[19] Robi Bhattacharjee and Kamalika Chaudhuri. 2020. When Are Non-Parametric Methods Robust?. In International
Conference on Machine Learning (ICML). 832–841.

[20] Robi Bhattacharjee, Somesh Jha, and Kamalika Chaudhuri. 2021. Sample Complexity of Robust Linear Classification

on Separated Data. In Conference on Learning Theory (COLT). 884–893.
[21] Battista Biggio and Fabio Roli. 2018. Wild Patterns: Ten Years after The Rise of Adversarial Machine Learning. Pattern

Recognition 84 (2018), 317–331.

[22] Avrim Blum, Travis Dick, Naren Manoj, and Hongyang Zhang. 2020. Random Smoothing Might Be Unable to Certify

𝐿∞ Robustness for High-Dimensional Images. 21, 211 (2020), 8726–8746.

[23] Giuseppe Bonaccorso. 2017. Machine Learning Algorithms: A Reference Guide to Popular Algorithms for Data Science
and Machine Learning. Packt Publishing.

[24] Christer Borell. 1975. The Brunn-Minkowski Inequality in Gauss Space. Inventiones mathematicae 30 (1975), 207–216.
[25] Sebastien Bubeck, Yin Tat Lee, Eric Price, and Ilya Razenshteyn. 2019. Adversarial Examples from Computational

Constraints. In International Conference on Machine Learning (ICML). 831–840.
[26] Anh Bui, Trung Le, He Zhao, Paul Montague, Oliver deVel, Tamas Abraham, and Dinh Phung. 2020. Improving

Adversarial Robustness by Enforcing Local and Global Compactness. In European Conference on Computer Vision
(ECCV). 209–223.

[27] Ginevra Carbone, Matthew Wicker, Luca Laurenti, Andrea Patane, Luca Bortolussi, and Guido Sanguinetti. 2020.

Robustness of Bayesian Neural Networks to Gradient-Based Attacks. In International Conference on Neural Information
Processing Systems (NeurIPS). 15602–15613.

[28] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness of Neural Networks. In Symposium
on Security and Privacy (SP). 39–57.

[29] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. 2019. Unlabeled Data Improves

Adversarial Robustness. In Advances in Neural Information Processing Systems (NeurIPS).

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.

https://dl.acm.org/journal/csur
https://proceedings.neurips.cc
http://portal.core.edu.au/conf-ranks/
https://jcr.clarivate.com/jcr/home
https://proceedings.mlr.press
https://www.semanticscholar.org/product/api
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html


It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness

[30] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Debdeep Mukhopadhyay. 2018.

Adversarial Attacks and Defences: A Survey. ArXiv (2018).

[31] Guangyao Chen, Peixi Peng, Li Ma, Jia Li, Lin Du, and Yonghong Tian. 2021. Amplitude-Phase Recombination:

Rethinking Robustness of Convolutional Neural Networks in Frequency Domain. In IEEE/CVF International Conference
on Computer Vision (ICCV). 458–467.

[32] Pin-Yu Chen and Cho-Jui Hsieh. 2023. Adversarial Robustness for Machine Learning. Academic Press.

[33] Yiting Chen, Qibing Ren, and Junchi Yan. 2022. Rethinking and Improving Robustness of Convolutional Neural

Networks: a Shapley Value-based Approach in Frequency Domain. In Advances in Neural Information Processing
Systems.

[34] Wuxinlin Cheng, Chenhui Deng, Zhiqiang Zhao, Yaohui Cai, Zhiru Zhang, and Zhuo Feng. 2021. SPADE: A Spectral

Method for Black-Box Adversarial Robustness Evaluation. In International Conference on Machine Learning (ICML).
1814–1824.

[35] Zhen Cheng, Fei Zhu, Xu-Yao Zhang, and Cheng-Lin Liu. 2023. Adversarial Training with Distribution Normalization

and Margin Balance. Pattern Recognition (2023).

[36] Fan. R. K. Chung. 1997. Spectral Graph Theory. American Mathemetical Society.

[37] Antonio Emanuele Cinà, Kathrin Grosse, Ambra Demontis, Sebastiano Vascon, Werner Zellinger, Bernhard A. Moser,

Alina Oprea, Battista Biggio, Marcello Pelillo, and Fabio Roli. 2023. Wild Patterns Reloaded: A Survey of Machine

Learning Security against Training Data Poisoning. Comput. Surveys (2023).
[38] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. 2019. Certified Adversarial Robustness via Randomized Smoothing.

In International Conference on Machine Learning (ICML). 1310–1320.
[39] The International Skin Imaging Collaboration. 2019. https://www.isic-archive.com.

[40] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,

Stefan Roth, and Bernt Schiele. 2016. The Cityscapes Dataset for Semantic Urban Scene Understanding. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 3213–3223.

[41] J.S. Cramer. 2002. The Origins of Logistic Regression. Technical Report 2002-119/4. Tinbergen Institute.

[42] Francesco Croce and Matthias Hein. 2020. Minimally Distorted Adversarial Examples with a Fast Adaptive Boundary

Attack. In International Conference on Machine Learning (ICML). 2196–2205.
[43] Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. 2018. PAC-Learning in the Presence of Evasion Adversaries.

In Advances in Neural Information Processing Systems (NeurIPS). 228–239.
[44] Chen Dan, Yuting Wei, and Pradeep Ravikumar. 2020. Sharp Statistical Guarantees for Adversarially Robust Gaussian

Classification. In International Conference on Machine Learning (ICML). 2345–2355.
[45] Amit Daniely and Hadas Schacham. 2020. Most ReLU Networks Suffer from L2 Adversarial Perturbations. In Advances

in Neural Information Processing Systems (NeurIPS). 6629–6636.
[46] David.H.Haussler, Nick. Littlestone, and Manfred.K. Warmuth. 1994. Predicting 0, 1-Functions on Randomly Drawn

Points. Information and Computation 115, 2 (1994), 248–292.

[47] Giacomo De Palma, Bobak Kiani, and Seth Lloyd. 2021. Adversarial Robustness Guarantees for Random Deep Neural

Networks. In International Conference on Machine Learning (ICML). 2522–2534.
[48] Akshay Degwekar, Preetum Nakkiran, and Vinod Vaikuntanathan. 2019. Computational Limitations in Robust

Classification and Win-Win Results. In Conference on Learning Theory (COLT). 994–1028.
[49] Luca Demetrio, Scott E. Coull, Battista Biggio, Giovanni Lagorio, Alessandro Armando, and Fabio Roli. 2021. Adver-

sarial EXEmples: A Survey and Experimental Evaluation of Practical Attacks on Machine Learning for Windows

Malware Detection. ACM Transactions on Privacy and Security 24, 4 (2021), 1–31.

[50] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Dan Arp, Konrad Rieck, Igino Corona, Giorgio

Giacinto, and Fabio Roli. 2019. Yes, Machine Learning Can Be More Secure! A Case Study on Android Malware

Detection. IEEE Transactions on Dependable and Secure Computing (TDSC) 16, 4 (2019), 711–724.
[51] Yingpeng Deng and Lina J. Karam. 2020. Frequency-Tuned Universal Adversarial Perturbations. In Computer Vision –

ECCV 2020 Workshops. 494–510.
[52] Yingpeng Deng and Lina J. Karam. 2022. Frequency-Tuned Universal Adversarial Attacks on Texture Recognition.

IEEE Transactions on Image Processing (TIP) 31 (2022), 5856–5868.
[53] Gavin Weiguang Ding, Kry Yik Chau Lui, Xiaomeng Jin, Luyu Wang, and Ruitong Huang. 2019. On the Sensitivity of

Adversarial Robustness to Input Data Distributions. In International Conference on Learning Representations (ICLR).
[54] Dimitrios I. Diochnos, Saeed Mahloujifar, and Mohammad Mahmoody. 2018. Adversarial Risk and Robustness:

General Definitions and Implications for the Uniform Distribution. In Advances in Neural Information Processing
Systems (NeurIPS). 10380–10389.

[55] Elvis Dohmatob. 2019. Generalized No Free Lunch Theorem for Adversarial Robustness. In International Conference
on Machine Learning (ICML). 1646–1654.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.

https://www.isic-archive.com


Peiyu Xiong, Michael Tegegn, Jaskeerat Singh Sarin, Shubhraneel Pal, and Julia Rubin

[56] Chengyu Dong, Liyuan Liu, and Jingbo Shang. 2022. Label Noise in Adversarial Training: A Novel Perspective to

Study Robust Overfitting. In Advances in Neural Information Processing Systems (NeurIPS).
[57] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi

Kohno, and Dawn Song. 2018. Robust Physical-World Attacks on Deep Learning Visual Classification. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 1625–1634.

[58] Alhussein Fawzi, Hamza Fawzi, and Omar Fawzi. 2018. Adversarial Vulnerability for Any Classifier. In Advances in
Neural Information Processing Systems (NeurIPS). 1186–1195.

[59] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. 2015. Fundamental Limits on Adversarial Robustness. In ICML
Workshop on Deep Learning.

[60] Sid Ahmed Fezza, Yassine Bakhti, Wassim Hamidouche, and Olivier Déforges. 2019. Perceptual Evaluation of

Adversarial Attacks for CNN-based Image Classification. In International Conference on Quality of Multimedia
Experience (QoMEX). 1–6.

[61] Benoit Frenay and Michel Verleysen. 2014. Classification in the Presence of Label Noise: A Survey. IEEE Transactions
on Neural Networks and Learning Systems 25, 5 (2014), 845–869.

[62] Shivam Garg, Vatsal Sharan, Brian Hu Zhang, and Gregory Valiant. 2018. A Spectral View of Adversarially Robust

Features. In Advances in Neural Information Processing Systems (NeurIPS). 10159–10169.
[63] Amirata Ghorbani, Abubakar Abid, and James Zou. 2019. Interpretation of Neural Networks is Fragile. In AAAI

Conference on Artificial Intelligence (AAAI). 3681–3688.
[64] Partha Ghosh, Arpan Losalka, and Micheal. J. Black. 2019. Resisting Adversarial Attacks using Gaussian Mixture

Variational Autoencoders. In AAAI Conference on Artificial Intelligence (AAAI). 541–548.
[65] Justin Gilmer, Ryan P. Adams, Ian J. Goodfellow, David G. Andersen, and George E. Dahl. 2018. Motivating the Rules

of the Game for Adversarial Example Research. ArXiv (2018).

[66] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu, Martin Wattenberg, and Ian J.

Goodfellow. 2018. Adversarial Spheres. In International Conference on Learning Representations (ICLR).
[67] Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song, Aleksander Madry,

Bo Li, and Tom Goldstein. 2022. Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks, and

Defenses. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).
[68] Ian Goodfellow, Nicolas Papernot, Sandy Huang, Rocky Duan, Pieter Abbeel, and Jack Clark. 2017. Attacking Machine

Learning with Adversarial Examples. https://openai.com/blog/adversarial-example-research/.

[69] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and Harnessing Adversarial Examples. In

International Conference on Learning Representations (ICLR).
[70] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and Harnessing Adversarial Examples.

In International Conference on Learning Representations (ICLR).
[71] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. 2021. Regularization of neural networks by

enforcing Lipschitz continuity. Machine Learning 110 (2021), 393–416.

[72] Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, and James Worrell. 2021. On the Hardness of Robust

Classification. Journal of Machine Learning Research 22, 273 (2021), 12521–12549.

[73] Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, and James Worrell. 2022. Sample Complexity Bounds for

Robustly Learning Decision Lists against Evasion Attacks. In International Joint Conference on Artificial Intelligence,
(IJCAI). 3022–3028.

[74] Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and Timothy Mann. 2021.

Improving Robustness using Generated Data. In Advances in Neural Information Processing Systems (NeurIPS). 4218–
4233.

[75] UCI Machine Learning Group. 1995. Abalone Dataset. https://archive.ics.uci.edu/ml/datasets/abalone.

[76] Wenbo Guo, Dongliang Mu, Jun Xu, Purui Su, Gang Wang, and Xinyu Xing. 2018. LEMNA: Explaining Deep Learning

Based Security Applications. In ACM SIGSAC Conference on Computer and Communications Security (CCS). 364–379.
[77] Yiwen Guo, Long Chen, Yurong Chen, and Changshui Zhang. 2021. On Connections between Regularizations for

Improving DNN Robustness. IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 12 (2021), 4469–4476.
[78] Sicong Han, Chenhao Lin, Chao Shen, Qian Wang, and Xiaohong Guan. 2023. Interpreting Adversarial Examples in

Deep Learning: A Review. Comput. Surveys (2023).
[79] Haibo He and Edwardo A. Garcia. 2009. Learning From Imbalanced Data. IEEE Transactions on Knowledge and Data

Engineering (TKDE) 21, 9 (2009), 1263–1284.
[80] Xinlei He and Yang Zhang. 2021. Quantifying and Mitigating Privacy Risks of Contrastive Learning. In ACM SIGSAC

Conference on Computer and Communications Security (CCS). 845–863.
[81] Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie, Philip S. Yu, and Xuyun Zhang. 2022. Membership Inference

Attacks on Machine Learning: A Survey. Comput. Surveys 54, 235 (2022), 1–37.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.

https://openai.com/blog/adversarial-example-research/
https://archive.ics.uci.edu/ml/datasets/abalone


It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness

[82] Huawei Huang,Wei Kong, Sicong Zhou, Zibin Zheng, and SongGuo. 2021. A Survey of State-of-the-Art on Blockchains:

Theories, Modelings, and Tools. Comput. Surveys 54, 44 (2021), 1–42.
[83] Ingo. Höntsch and Lina.J. Karam. 2002. Adaptive Image Coding with Perceptual Distortion Control. IEEE Transactions

on Image Processing 11, 3 (2002), 213–222.

[84] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Mądry. 2019.

Adversarial Examples Are Not Bugs, They Are Features. InAdvances in Neural Information Processing Systems (NeurIPS).
125–136.

[85] Rauf Izmailov, Shridatt Sugrim, Ritu Chadha, Patrick McDaniel, and Ananthram Swami. 2018. Enablers of Adversarial

Attacks in Machine Learning. In IEEE Military Communications Conference (MILCOM). 425–430.
[86] Joern-Henrik Jacobsen, Jens Behrmann, Richard Zemel, and Matthias Bethge. 2019. Excessive Invariance Causes

Adversarial Vulnerability. In International Conference on Learning Representations (ICLR).
[87] Adel Javanmard, Mahdi Soltanolkotabi, and Hamed Hassani. 2020. Precise Tradeoffs in Adversarial Training for

Linear Regression. In International Conference on Learning Theory (COLT). 2034–2078.
[88] Jongheon. Jeong and Jinwoo. Shin. 2020. Consistency Regularization for Certified Robustness of Smoothed Classifiers.

In Advances in Neural Information Processing Systems (NeurIPS). 10558–10570.
[89] Xi Wu Jiefeng Chen. 2019. Robust Attribution Regularization. https://www.altacognita.com/robust-attribution/.

[90] Ian. T. Jolliffe. 2002. Principal Component Analysis. Springer.
[91] Kaggle. 2015. Kaggle Diabetic Retinopathy Detection Challenge. https://www.kaggle.com/c/diabetic-retinopathy-

detection.

[92] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2009. CIFAR-10 and CIFAR-100 Datasets. https://www.cs.toronto.

edu/~kriz/cifar.html.

[93] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification with Deep Convolutional

Neural Networks. Commun. ACM 60 (2012), 84 – 90.

[94] Aounon Kumar, Alexander Levine, Tom Goldstein, and Soheil Feizi. 2020. Curse of Dimensionality on Randomized

Smoothing for Certifiable Robustness. In International Conference on Machine Learning (ICML). 5458–5467.
[95] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial Machine Learning at Scale. In International

Conference on Learning Representations (ICLR).
[96] Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. 1998. The MNIST Database of Handwritten Digits.

http://yann.lecun.com/exdb/mnist/.

[97] Guang-He Lee, Yang Yuan, Shiyu Chang, and Tommi Jaakkola. 2019. Tight Certificates of Adversarial Robustness for

Randomly Smoothed Classifiers. In Advances in Neural Information Processing Systems (NeurIPS).
[98] Saehyung Lee, Hyungyu Lee, and Sungroh Yoon. 2020. Adversarial Vertex Mixup: Toward Better Adversarially Robust

Generalization. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 269–278.
[99] Paul Lévy. 1951. Problèmes concrets d’analyse fonctionnelle. Gauthier-Villers.
[100] Binghui Li, Jikai Jin, Han Zhong, John E. Hopcroft, and Liwei Wang. 2022. Why Robust Generalization in Deep

Learning is Difficult: Perspective of Expressive Power. In Advances in Neural Information Processing Systems (NeurIPS).
[101] Deqiang Li, Qianmu Li, Yanfang (Fanny) Ye, and Shouhuai Xu. 2021. Arms Race in Adversarial Malware Detection: A

Survey. Comput. Surveys 55, 1 (2021), 1–35.
[102] Xiang Ling, Shouling Ji, Jiaxu Zou, Jiannan Wang, Chunming Wu, Bo Li, and Ting Wang. 2019. DEEPSEC: A Uniform

Platform for Security Analysis of Deep Learning Model. In IEEE Symposium on Security and Privacy (SP). 673–690.
[103] Jinxin Liu, Michele Nogueira, Johan Fernandes, and Burak Kantarci. 2022. Adversarial Machine Learning: A Multilayer

Review of the State-of-the-Art and Challenges for Wireless and Mobile Systems. IEEE Communications Surveys &
Tutorials 24, 1 (2022), 123–159.

[104] Xuanqing Liu, Si Si, Xiaojin Zhu, Yang Li, and Cho-Jui Hsieh. 2019. A Unified Framework for Data Poisoning Attack to

Graph-Based Semi-Supervised Learning. In Advances in Neural Information Processing Systems (NeurIPS). 9780–9790.
[105] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2022. Deep Learning for Android Malware Defenses: A

Systematic Literature Review. Comput. Surveys (2022).
[106] Ziwei Liu, Ping Luo, XiaogangWang, and Xiaoou Tang. 2015. Deep Learning Face Attributes in theWild. In Proceedings

of International Conference on Computer Vision (ICCV). 3730–3738.
[107] Victoria López, Alberto Fernández, Salvador García, Vasile Palade, and Francisco Herrera. 2013. An Insight Into

Classification with Imbalanced Data: Empirical Results and Current Trends on Using Data Intrinsic Characteristics.

Information Science (inf.Sci) 250 (2013), 113–141.
[108] Ana C. Lorena, Luís P. F. Garcia, Jens Lehmann, Marcilio C. P. Souto, and Tin Kam Ho. 2020. How Complex Is Your

Classification Problem? A Survey on Measuring Classification Complexity. Comput. Surveys 52, 107 (2020), 1–34.
[109] Xingjun Ma, Yuhao Niu, Lin Gu, YisenWang, Yitian Zhao, James Bailey, and Feng Lu. 2021. Understanding Adversarial

Attacks on Deep Learning Based Medical Image Analysis Systems. Pattern Recognition 110 (2021), 107332.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.

https://www.altacognita.com/robust-attribution/
https://www.kaggle.com/c/diabetic-retinopathy- detection
https://www.kaggle.com/c/diabetic-retinopathy- detection
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/


Peiyu Xiong, Michael Tegegn, Jaskeerat Singh Sarin, Shubhraneel Pal, and Julia Rubin

[110] Gabriel Resende Machado, Eugênio Silva, and Ronaldo Ribeiro Goldschmidt. 2021. Adversarial Machine Learning in

Image Classification: A Survey Toward the Defender’s Perspective. Comput. Surveys 55, 8 (2021), 1–38.
[111] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018. Towards Deep

Learning Models Resistant to Adversarial Attacks. In International Conference on Learning Representations (ICLR).
[112] Saeed Mahloujifar, Dimitrios I. Diochnos, and Mohammad Mahmoody. 2019. The Curse of Concentration in Robust

Learning: Evasion and Poisoning Attacks from Concentration of Measure. In AAAI Conference on Artificial Intelligence
(AAAI). 4536–4543.

[113] Saeed Mahloujifar, Xiao Zhang, Mohammad Mahmoody, and David Evans. 2019. Empirically Measuring Concentra-

tion: Fundamental Limits on Intrinsic Robustness. In Advances in Neural Information Processing Systems (NeurIPS).
5209–5220.

[114] Davide Maiorca, Battista Biggio, and Giorgio Giacinto. 2019. Towards Adversarial Malware Detection: Lessons

Learned from PDF-based Attacks. Comput. Surveys 52, 78 (2019), 1–36.
[115] Chengzhi Mao, Amogh Gupta, Vikram Nitin, Baishakhi Ray, Shuran Song, Junfeng Yang, and Carl Vondrick. 2020.

Multitask Learning Strengthens Adversarial Robustness. In European Conference on Computer Vision (ECCV). 158–174.
[116] Mohammad Mehrabi, Adel Javanmard, Ryan A. Rossi, Anup Rao, and Tung Mai. 2021. Fundamental Tradeoffs in

Distributionally Adversarial Training. In International Conference on Machine Learning (ICML). 7544–7554.
[117] Ali H. Mezher, Yingpeng Deng, and Lina J. Karam. 2022. Visual Quality Assessment of Adversarially Attacked Images.

In European Workshop on Visual Information Processing (EUVIP). 1–5.
[118] Eric Mintun, Alexander Kirillov, and Saining Xie. 2021. On Interaction Between Augmentations and Corruptions in

Natural Corruption Robustness. In Advances in Neural Information Processing Systems (NeurIPS). 3571–3583.
[119] Omar Montasser, Steve Hanneke, and Nathan Srebro. 2022. Adversarially Robust Learning: A Generic Minimax

Optimal Learner and Characterization. In Advances in Neural Information Processing Systems (NeurIPS).
[120] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, Pascal Frossard, and Stefano Soatto. 2018. Robust-

ness of Classifiers to Universal Perturbations: A Geometric Perspective. In International Conference on Learning
Representations (ICLR).

[121] Jose Garcia Moreno-Torres, Troy Raeder, Rocío Alaíz-Rodríguez, N. Chawla, and Francisco Herrera. 2012. A Unifying

View on Dataset Shift in Classification. Pattern Recognition 45 (2012), 521–530.

[122] Aamir Mustafa, Salman Khan, Munawar Hayat, Roland Goecke, Jianbing Shen, and Ling Shao. 2019. Adversarial

Defense by Restricting the Hidden Space of Deep Neural Networks. In IEEE International Conference on Computer
Vision (ICCV). 3384–3393.

[123] Aamir Mustafa, Salman H Khan, Munawar Hayat, Roland Goecke, Jianbing Shen, and Ling Shao. 2020. Deeply

supervised discriminative learning for adversarial defense. IEEE Transactions on Pattern Analysis and Machine
Intelligence 43, 9 (2020), 3154–3166.

[124] Vasileios Mygdalis and Ioannis Pitas. 2022. Hyperspherical Class Prototypes for Adversarial Robustness. Pattern
Recognition (2022).

[125] Amir Najafi, Shin ichi Maeda, Masanori Koyama, and Takeru Miyato. 2019. Robustness to Adversarial Perturbations

in Learning from Incomplete Data. In Advances in Neural Information Processing Systems (NeurIPS). 5541–5551.
[126] Mahum Naseer, Bharath Srinivas Prabakaran, Osman Hasan, and Muhammad Shafique. 2023. UnbiasedNets: a dataset

diversification framework for robustness bias alleviation in neural networks. Machine Learning (2023), 1–28.

[127] Balas K. Natarajan. 2004. On learning sets and functions. Machine Learning 4 (2004), 67–97.

[128] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. 2011. Reading Digits in

Natural Images with Unsupervised Feature Learning. In NeurIPS Workshop on Deep Learning and Unsupervised Feature
Learning.

[129] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Ambrish Rawat, Martin Wistuba, Valentina

Zantedeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, Ian Molloy, and Ben Edwards. 2018. Adversarial

Robustness Toolbox v1.2.0. ArXiv (2018).

[130] Guillermo Ortiz-Jimenez, Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. 2020. Hold Me

Tight! Influence of Discriminative Features on Deep Network Boundaries. In Advances in Neural Information Processing
Systems (NeurIPS). 2935–2946.

[131] Tianyu Pang, Chao Du, and Jun Zhu. 2018. Max-Mahalanobis Linear Discriminant Analysis Networks. In Proceedings
of the 35th International Conference on Machine Learning (ICML). 4013–4022.

[132] Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen, and Jun Zhu. 2020. Rethinking Softmax Cross-Entropy

Loss for Adversarial Robustness. In International Conference on Learning Representations (ICLR).
[133] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. 2019. Improving Adversarial Robustness via Promoting

Ensemble Diversity. In International Conference on Machine Learning (ICML). 4970–4979.
[134] Tianyu Pang, Xiao Yang, Yinpeng Dong, Kun Xu, Jun Zhu, and Hang Su. 2020. Boosting Adversarial Training with

Hypersphere Embedding. In Advances in Neural Information Processing Systems (NeurIPS). 7779–7792.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.



It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness

[135] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro. 2020. Intriguing Properties of

Adversarial ML Attacks in the Problem Space. In Symposium on Security and Privacy (SP).
[136] Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. 2021. The Intrinsic Dimension of

Images and Its Impact on Learning. In International Conference on Learning Representations (ICLR).
[137] Jack Prescott, Xiao Zhang, and David Evans. 2021. Improved Estimation of Concentration Under Lp-Norm Distance

Metrics Using Half Spaces. In International Conference on Learning Representations (ICLR).
[138] Muni Sreenivas Pydi and Varun Jog. 2020. Adversarial Risk via Optimal Transport and Optimal Couplings. In

International Conference on Machine Learning (ICML). 7814–7823.
[139] Muni Sreenivas Pydi and Varun Jog. 2021. The Many Faces of Adversarial Risk. In Advances in Neural Information

Processing Systems (NeurIPS). 10000–10012.
[140] Mohammadreza Qaraei and Rohit Babbar. 2022. Adversarial examples for extreme multilabel text classification.

Machine Learning (2022), 1–25.

[141] Shashank Rajput, Zhili Feng, Zachary Charles, Po-Ling Loh, and Dimitris Papailiopoulos. 2019. Does Data Augmenta-

tion Lead to Positive Margin?. In International Conference on Machine Learning (ICML). 5321–5330.
[142] S.J. Raudys and A.K. Jain. 1991. Small Sample Size Effects in Statistical Pattern Recognition: Recommendations for

Practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 3 (1991), 252–264.
[143] Mohammad Rezaeirad, Brown Farinholt, Hitesh Dharmdasani, Paul Pearce, Kirill Levchenko, and Damon McCoy.

2018. Schrödinger’s RAT: Profiling the Stakeholders in the Remote Access Trojan Ecosystem. In USENIX Security
Symposium. 1043–1060.

[144] Eitan Richardson and Yair Weiss. 2021. A Bayes-Optimal View on Adversarial Examples. Journal of Machine Learning
Research (JMLR) 22, 221 (2021), 10076–10103.

[145] Ishai Rosenberg, Asaf Shabtai, Yuval Elovici, and Lior Rokach. 2021. Adversarial Machine Learning Attacks and

Defense Methods in the Cyber Security Domain. Comput. Surveys 54, 5 (2021), 1–36.
[146] Miriam Santos, Pedro Henriques Abreu, Nathalie Japkowicz, Alberto Fernández, Carlos Soares, Szymon Wilk, and

Joao Santos. 2022. On the Joint-Effect of Class Imbalance and Overlap: A Critical Review. Artificial Intelligence Review
(2022), 1–69.

[147] Amartya Sanyal, Puneet K. Dokania, Varun Kanade, and Philip Torr. 2021. How Benign is Benign Overfitting?. In

International Conference on Learning Representations (ICLR).
[148] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander Madry. 2018. Adversarially Robust

Generalization Requires More Data. In Advances in Neural Information Processing Systems (NeurIPS). 5019–5031.
[149] H. Scudder. 1965. Probability of Error of Some Adaptive Pattern-Recognition Machines. IEEE Transactions on

Information Theory 11, 3 (1965), 363–371.

[150] Alex Serban, Erik Poll, and Joost Visser. 2020. Adversarial Examples on Object Recognition: A Comprehensive Survey.

Comput. Surveys 53, 3 (2020), 1–38.
[151] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras, and Tom Goldstein.

2018. Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks. In Advances in Neural Information
Processing Systems (NeurIPS). 6106–6116.

[152] Ali Shafahi, W. Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein. 2019. Are Adversarial Examples

Inevitable?. In International Conference on Learning Representations (ICLR).
[153] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding Machine Learning: From Theory to Algorithms.

Cambridge University Press.

[154] Adi Shamir, Itay Safran, Eyal Ronen, and Orr Dunkelman. 2019. A Simple Explanation for the Existence of Adversarial

Examples with Small Hamming Distance. ArXiv abs/1901.10861 (2019).

[155] Claude E. Shannon. 1949. The Mathematical Theory of Communication. University of Illinois Press.

[156] Mahmood. Sharif, Lujo. Bauer, andMichael. K. Reiter. 2018. On the Suitability of Lp-Norms for Creating and Preventing

Adversarial Examples. In IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
1686–16868.

[157] Yucheng Shi, Yahong Han, Yu-an Tan, and Xiaohui Kuang. 2022. Decision-based Black-box Attack Against Vision

Transformers via Patch-wise Adversarial Removal. In Advances in Neural Information Processing Systems (NeurIPS).
12921–12933.

[158] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Membership Inference Attacks Against

Machine Learning Models. In IEEE Symposium on Security and Privacy (SP). 3–18.
[159] Carl-Johann Simon-Gabriel, Yann Ollivier, Bernhard Schölkopf, Léon Bottou, and David Lopez-Paz. 2019. First-order

Adversarial Vulnerability of Neural Networks and Input Dimension. In International Conference on Machine Learning
(ICML). 5809–5817.

[160] Vasu Singla, Songwei Ge, Ronen Basri, and David Jacobs. 2021. Shift Invariance Can Reduce Adversarial Robustness.

In Advances in Neural Information Processing Systems (NeurIPS). 1858–1871.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.



Peiyu Xiong, Michael Tegegn, Jaskeerat Singh Sarin, Shubhraneel Pal, and Julia Rubin

[161] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. 2022. Learning From Noisy Labels With

Deep Neural Networks: A Survey. IEEE Transactions on Neural Networks and Learning Systems (TNNLS) (2022), 1–19.
[162] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. 2018. PixelDefend: Leveraging

Generative Models to Understand and Defend against Adversarial Examples. In International Conference on Learning
Representations (ICLR).

[163] Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, S Yu Philip, Lifang He, and Bo Li. 2022. Adversarial Attack

and Defense on Graph Data: A Survey. IEEE Transactions on Knowledge and Data Engineering (TKDE) (2022).
[164] Sun, Jiachen and Mehra, Akshay and Kailkhura, Bhavya and Chen, Pin-Yu and Hendrycks, Dan and Hamm, Jihun

and Mao, Z. Morley. 2022. A Spectral View of Randomized Smoothing Under Common Corruptions: Benchmarking

and Improving Certified Robustness. In European Conference on Computer Vision(ECCV). 654–671.
[165] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus.

2014. Intriguing Properties of Neural Networks. In International Conference on Learning Representations (ICLR).
[166] Michel Talagrand. 1996. A New Look at Independence. The Annals of Probability (1996), 1–34.

[167] Michel Talagrand. 1996. Transportation Cost for Gaussian and Other Product Measures. Geometric and Functional
Analysis 6 (1996), 587–600.

[168] Mingtian Tan, Junpeng Wan, Zhe Zhou, and Zhou Li. 2021. Invisible Probe: Timing Attacks with PCIe Congestion

Side-channel. In IEEE Symposium on Security and Privacy (SP). 322–338.
[169] Thomas Tanay and Lewis D. Griffin. 2016. A Boundary Tilting Perspective on the Phenomenon of Adversarial

Examples. ArXiv (2016).

[170] Zhiyi Tian, Lei Cui, Jie Liang, and Shui Yu. 2022. A Comprehensive Survey on Poisoning Attacks and Countermeasures

in Machine Learning. Comput. Surveys (2022).
[171] Liang Tong, Bo Li, Chen Hajaj, Chaowei Xiao, Ning Zhang, and Yevgeniy Vorobeychik. 2019. Improving Robustness

of ML Classifiers against Realizable Evasion Attacks Using Conserved Features. In USENIX Conference on Security
Symposium (USENIX Security). 285–302.

[172] Antonio Torralba, Rob Fergus, and William T. Freeman. 2008. 80 Million Tiny Images: A Large Data Set for Nonpara-

metric Object and Scene Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 11 (2008),
1958–1970.

[173] Jerome Friedman Trevor Hastie, Robert Tibshirani. 2009. The Elements of Statistical Learning: Data Mining, Inference,
and Prediction. Springer New York, NY.

[174] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. 2019. Robustness

May Be at Odds with Accuracy. In International Conference on Learning Representations (ICLR).
[175] Jonathan Uesato, Jean-Baptiste Alayrac, Po-Sen Huang, Robert Stanforth, Alhussein Fawzi, and Pushmeet Kohli. 2019.

Are Labels Required for Improving Adversarial Robustness?. In Advances in Neural Information Processing Systems
(NeurIPS). 12214–12223.

[176] viso.ai. 2022. What is Adversarial Machine Learning? Attack Methods in 2022. https://viso.ai/deep-learning/

adversarial-machine-learning/.

[177] Weitao Wan, Jiansheng Chen, Cheng Yu, Tong Wu, Yuanyi Zhong, and Ming-Hsuan Yang. 2022. Shaping Deep

Feature Space towards Gaussian Mixture for Visual Classification. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2022).

[178] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. 2018. CosFace:

Large Margin Cosine Loss for Deep Face Recognition. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 5265–5274.

[179] H. Wang, X. Wu, Z. Huang, and E. P. Xing. 2020. High-Frequency Component Helps Explain the Generalization

of Convolutional Neural Networks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
8681–8691.

[180] Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen, Runkai Zheng, Yidong Wang, Linyi Yang, Haojun Huang, Wei

Ye, Xiubo Geng, Binxin Jiao, Yue Zhang, and Xing Xie. 2023. On the Robustness of ChatGPT: An Adversarial and

Out-of-distribution Perspective. ArXiv (2023).

[181] Tianfeng Wang, Zhisong Pan, Guyu Hu, Yexin Duan, and Yu Pan. 2022. Understanding Universal Adversarial Attack

and Defense on Graph. International Journal on Semantic Web Information Systems 18, 1 (2022), 1–21.
[182] Wentao Wang, Han Xu, Xiaorui Liu, Yaxin Li, Bhavani Thuraisingham, and Jiliang Tang. 2021. Imbalanced Adversarial

Training with Reweighting. ArXiv (2021).

[183] XiaosongWang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M. Summers. 2017. ChestX-Ray8:

Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of

Common Thorax Diseases. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3462–3471.
[184] Yizhen Wang, Somesh Jha, and Kamalika Chaudhuri. 2018. Analyzing the Robustness of Nearest Neighbors to

Adversarial Examples. In International Conference on Machine Learning (ICML). 5133–5142.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.

https://viso.ai/deep-learning/adversarial-machine-learning/
https://viso.ai/deep-learning/adversarial-machine-learning/


It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness

[185] Melanie Weber, Manzil Zaheer, Ankit Singh Rawat, Aditya K Menon, and Sanjiv Kumar. 2020. Robust Large-margin

Learning in Hyperbolic Space. In Advances in Neural Information Processing Systems (NeurIPS). 17863–17873.
[186] Tong Wu, Ziwei Liu, Qingqiu Huang, Yu Wang, and Dahua Lin. 2021. Adversarial Robustness under Long-Tailed

Distribution. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 8655–8664.
[187] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine

Learning Algorithms. ArXiv (2017).

[188] Yue Xing, Qifan Song, and Guang Cheng. 2022. Why Do Artificially Generated Data Help Adversarial Robustness. In

Advances in Neural Information Processing Systems (NeurIPS), Vol. 35. 954–966.
[189] Peiyu Xiong, Michael Tegegn, Jaskeerat Singh Sarin, and Shubhraneel Pal. 2023. Supplementary Materials. https:

// resess.github.io/artifacts/DataForMLRobustness.
[190] Jingyuan Xu and Weiwei Liu. 2022. On Robust Multiclass Learnability. In Advances in Neural Information Processing

Systems (NeurIPS). 32412–32423.
[191] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin. 2019. Topology Attack

and Defense for Graph Neural Networks: An Optimization Perspective. In International Joint Conference on Artificial
Intelligence (IJCAI). 3961–3967.

[192] Qinwei Xu, Ruipeng Zhang, Ya Zhang, Yanfeng Wang, and Qi Tian. 2021. A Fourier-based Framework for Domain

Generalization. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 14378–14387.
[193] Jia Xue, Hang Zhang, Kristin J. Dana, and Ko Nishino. [n. d.]. Differential Angular Imaging for Material Recognition.

[194] Lu Yang, He Jiang, Qing Song, and Jun Guo. 2022. A Survey on Long-Tailed Visual Recognition. International Journal
of Computer Vision 130, 7 (2022), 1837–1872.

[195] Shuo Yang, Zeyu Feng, Pei Du, Bo Du, and Chang Xu. 2021. Structure-Aware Stabilization of Adversarial Robustness

with Massive Contrastive Adversaries. In IEEE International Conference on Data Mining (ICDM). 807–816.
[196] Shuo Yang, Tianyu Guo, Yunhe Wang, and Chang Xu. 2021. Adversarial Robustness through Disentangled Represen-

tations. In AAAI Conference on Artificial Intelligence (AAAI). 3145–3153.
[197] Yao-Yuan Yang, Cyrus Rashtchian, Yizhen Wang, and Kamalika Chaudhuri. 2020. Robustness for Non-Parametric

Classification: A Generic Attack and Defense. In International Conference on Artificial Intelligence and Statistics
(AISTATS). 941–951.

[198] Dong Yin, Ramchandran Kannan, and Peter Bartlett. 2019. Rademacher Complexity for Adversarially Robust

Generalization. In International Conference on Machine Learning (ICML). 7085–7094.
[199] Dong Yin, Raphael Gontijo Lopes, Jonathon Shlens, Ekin D. Cubuk, and Justin Gilmer. 2019. A Fourier Perspective on

Model Robustness in Computer Vision. In Advances in Neural Information Processing Systems (NeurIPS). 13276–13286.
[200] Xiaoyan Yin, Wanyu Lin, Kexin Sun, Chun Wei, and Yanjiao Chen. 2023. A2S2-GNN: Rigging GNN-Based Social

Status by Adversarial Attacks in Signed Social Networks. IEEE Transactions on Information Forensics and Security
(TIFS) 18 (2023), 206–220.

[201] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. 2015. LSUN: Construction of a Large-scale Image

Dataset using Deep Learning with Humans in the Loop. ArXiv (2015).

[202] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial Examples: Attacks and Defenses for Deep

Learning. IEEE Transactions Neural Networks and Learning Systems (2019).
[203] Amir R. Zamir, Alexander Sax, William B. Shen, Leonidas J. Guibas, Jitendra Malik, and Silvio Savarese. 2018.

Taskonomy: Disentangling Task Transfer Learning. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 3712–3722.

[204] Chaoning Zhang, Philipp Benz, Adil Karjauv, and In So Kweon. 2021. Universal Adversarial Perturbations Through

the Lens of Deep Steganography: Towards a Fourier Perspective. In AAAI Conference on Artificial Intelligence (AAAI).
3296–3304.

[205] Chang-Bin Zhang, Peng-Tao Jiang, Qibin Hou, Yunchao Wei, Qi Han, Zhen Li, and Ming-Ming Cheng. 2021. Delving

Deep Into Label Smoothing. IEEE Transactions on Image Processing (TIP) 30 (2021), 5984–5996.
[206] Huan Zhang, Hongge Chen, Zhao Song, Duane Boning, Inderjit Dhillon, and Cho-Jui Hsieh. 2019. The Limitations of

Adversarial Training and the Blind-Spot Attack. In International Conference on Learning Representations (ICLR).
[207] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. 2019. Theoretically

Principled Trade-off between Robustness and Accuracy. In International Conference on Machine Learning (ICML).
7472–7482.

[208] Hengtong Zhang, Tianhang Zheng, Jing Gao, Chenglin Miao, Lu Su, Yaliang Li, and Kui Ren. 2019. Data Poisoning

Attack against Knowledge Graph Embedding. In International Joint Conference on Artificial Intelligence (IJCAI).
4853–4859.

[209] Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi, and Chenliang Li. 2020. Adversarial Attacks on Deep-Learning

Models in Natural Language Processing: A Survey. ACM Transactions on Intelligent Systems and Technology 11, 3

(2020), 1–41.

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.

https://resess.github.io/artifacts/DataForMLRobustness
https://resess.github.io/artifacts/DataForMLRobustness


Peiyu Xiong, Michael Tegegn, Jaskeerat Singh Sarin, Shubhraneel Pal, and Julia Rubin

[210] Xiao Zhang and David Evans. 2022. Incorporating Label Uncertainty in Understanding Adversarial Robustness. In

International Conference on Learning Representations (ICLR).
[211] Shuai Zhou, Chi Liu, Dayong Ye, Tianqing Zhu, Wanlei Zhou, and Philip S. Yu. 2022. Adversarial Attacks and Defenses

in Deep Learning: From a Perspective of Cybersecurity. Comput. Surveys (2022).
[212] Hangyu Zhu and Yaochu Jin. 2020. Multi-Objective Evolutionary Federated Learning. IEEE Transactions on Neural

Networks and Learning Systems 31, 4 (2020), 1310–1322.
[213] Yao Zhu, Jiacheng Sun, and Zhenguo Li. 2022. Rethinking Adversarial Transferability from a Data Distribution

Perspective. In International Conference on Learning Representations (ICLR).

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: October 2023.


	References



