Color coding
e Problem Setup:

o Project setup: scope and expectations
e |nstructions and Expected Results:

o Explicit Requests

o Expected Content

o Expected Format: paragraph vs. bullet points, length, etc.
e Contextualization:

o Personas

o Examples
e Not considered/counted

> Prompt
Hi ChatGPT! You are a software engineer with experience in requirement engineering. You will aid in

defining requirements specifications for a new project. You will need to refine, clarify, and expand upon
an initial requirements specifications provided as an input.

> Prompt

| will provide you with my application idea in the next prompt and then ask a few questions about it.

> Prompt
My application name is <NAME> and its high-level idea is <IDEA>.

The app description is: <DESCRIPTION>

Let’s start with functional requirements. | will now provide you my initial specification of functional
requirements and will ask you to refine them.
> Prompt

Let's start with the main actors and functional requirements.

Here is my list of actors: <ACTORS>.
Here are my functional requirements: <FR>.

Given this definition and the functional requirements, should additional actors be added or should any
actors be removed? If so, please provide a

> Prompt (optional, if new actors added)

Let’s add the <NEW ACTOR> to the list of main actors and <FR_Name>. | will now ask you
guestions about functional requirements themselves.

> Prompt

Recall that

Please check whether the functional requirements satisfy the required constraints.

> Prompt

add, remove, or update the existing requirements to make sure all constraints are satisfied and
that there are

Recall that (written in active / verb-style) 1-2
sentences

For now, list the name, short description (1-2 sentences) and primary actor(s) of the produced
requirements and explain what changes were made to satisfy the constraints in 1-2 sentences

> Prompt (repeat for each requirement <#i>)

Let’s consider one functional requirement at a time. For the functional requirement

(optional, if exists) Its success and failure scenarios were:
<FR_success_faulure_senarious_name>

Refine the success scenarios and failure scenarios of this requirement. A success scenario is a numbered
sequence of steps in the normal flow of events in the system. A failure scenario describes what can go
wrong in each step of the success scenario and how this is handled. A failure scenario should be
numbered with the same number as the corresponding success scenario. That is, the list of failure
scenarios does not have to start at 1. Ensure the success scenarios and failure scenarios fully capture the
functionality of the requirement, and add points that may have been missed in the initial specification.

Here is an example:
Success Scenario:
1. Student selects “Register New Courses” from the menu.
2. System displays list of courses available for registering.
3. Student selects one or more courses he wants to register for.
4. Student clicks “Submit” button.
5. System registers student for the selected courses and displays a confirmation message.
Failure Scenarios:
2a. No courses are available for this student.
— 2al. System displays error message saying no courses are
available, and provides the reason & how to rectify if possible.
— 2a2. Student backs out of this use case and tries again
after rectifying the cause.
5a. Some courses could not be registered.
— 5al. System displays message showing which courses were
registered, and which courses were not registered along with a reason for each failure.
5b. None of the courses could be registered.
— 5b1l. System displays message saying none of the courses could be registered, along with a
reason for each failure.

> Prompt

Let’s put everything together. List all functional requirements for the project using the format described
below:

- The name of the requirement (written in active / verb-style)

- A short description of the requirement (1-2 sentences)

- Primary actor(s)

- Success scenario(s)

- Failure scenario(s)

> Prompt

Consider all functional
requirements in the text above and generate a consolidated list of all actors used. For each actor,
describe in 1-2 sentences its role and list the names of all functional requirements where it is used.

> Prompt

Using the description above, create a UML use-case diagram as a LaTeX graph. It should contain a node
for each actor and a node for each functional requirement. Use the name of an actor and the name of a
functional requirement as name of the corresponding nodes. For each functional requirement, add a
connection between the functional requirement and each of its primary actors. Add include, extend, and
generalize relationships of the use case diagram, if necessary.

> Prompt

Let’s consider the non-functional requirements next.

Examples of non-functional requirements include performance,
safety, security, scalability, dependability, reusability, portability.

For example:
- The user should not need more than 5 clicks to perform any action [usability]
- The message should be received within 5 seconds after it was sent [performance]
- The search should terminate within 7 seconds [performance]

Here are my non-functional requirements: <NFR>.

Please analyze each of the requirements, one at a time, and list suggestions for improvements, when
needed.

> Prompt

Apply the suggestions and add/remove/update existing non-functional requirements, to produce a list
of 2-3 main non-functional requirements for this app in the format below:

- a textual description

- an explanation for why this requirement is needed/relevant in 1-2 sentences

- how the requirement will be validated in 1-2 sentences.

